在近年历次华为旗舰手机的消费者调查中,作为支撑华为手机商业成功的重要力量,麒麟芯片越来越受关注。但实际上麒麟一路走来的艰难险阻,只有经历过的人才有深刻体会。这里,我们希望通过 2003 年以来的若干小故事,来探究麒麟的奋斗和变革历程。需要说明的是,麒麟只是一个代称,实际上是指用于手机的一系列芯片或部件,即华为无线终端芯片,包括麒麟、巴龙、HiKey(氦客开源开发板)、RF、Connectivity、PMU(电源管理单元芯片)、Codec(编解码器)等。
4G LTE Modem:
星星之火,可以燎原
2010年 12 月,一个天寒地冻的日子,几个中国年轻人带着 CPE(客户终端设备)在德国郊区做户外信号测试。到现在,大家还记得户外冷冰冰的食物和水,记得全身冷到僵硬的感觉,但记忆最深刻的,还是测试过程中大家一起奋斗的那股干劲儿。他们当时测试的,是华为第一代商用 LTE终端芯片巴龙 700,内部代号叫北极星 Polaris。他们希望“北极星”能够指引胜利的方向。
华为无线终端芯片要从 2003 年说起。那时,公司决定研发用于 WCDMA(宽带码分多址)的手机芯片——代号是梅里。可惜这个项目不太成功。2007 年中,公司正式宣布停掉梅里项目。时任海思总裁徐直军表示,尽管梅里这个项目不做了,无线终端芯片领域还有更多挑战值得攻克,鼓励大家坚持下去。他说:“我们华为就是‘傻傻地投’。”
梅里这款产品虽然最终没能成功商用,但给团队积累了最为珍贵的产品经验与教训,更重要的是培养了一批人。梅里项目的结束其实是一个全新的开始,公司决定兵分三路:在 3G Modem(调制解调器)和 AP(应用处理器)处理器领域分别积蓄力量,另一方面也开始了 4G LTE 新技术的预研和探索。
于是三个团队分别重新踏上征途。王劲和 King 带领团队开始3G Modem(含 2G)研发;Jerry则带领梅里团队的一部分核心力量,在高端 AP 领域继续探索;第三个团队则专攻 4G LTE 方向。
2007 年底,华为无线产品线研发4G 网络设备需要配套的 4G测试终端。Sean 曾经有过 3G 测试终端的开发经验,责无旁贷地挑起了 LTE 测试终端开发的大梁。同时,由于缺人,公司决策将高端芯片专家 William 从发展得如火如荼的数字媒体芯片领域抽调到 LTE 领域,负责 LTE 芯片的开发。William 是一位非常有经验的芯片开发专家,在数据通信芯片、安全芯片、数字媒体芯片等领域有着成熟的产品开发经验。后来证明,正是这样才实现了 4G乃至 5G Modem 芯片的“星星之火,可以燎原”。
新鲜血液的加入,不仅带来了成熟的 SoC(片上系统)架构和电路设计经验,还带来项目开发的新思维。William 说:新团队没有经历梅里项目的磨难,但正是因为不了解,反倒有更多勇气去挑战,真正激发出团队潜力。与此同时,Sean 带领的团队也燃起全新的奋斗热情,坚守的兄弟们一心都想把项目做好,他们的心中始终燃烧着一团熊熊烈火。但不论团队如何热情高涨,艰难困苦一如既往地在前面等着大家。
第一代 LTE 单模 Modem巴龙 700:是 25Mbps,还是100Mbps ?
在定义第一代 LTE 芯片巴龙 700的最高速率时,大家在25Mbps(传输速率单位,兆比特每秒)和100Mbps 之间摇摆不定,当时 HSDPA(高速下行分组接入)的下行峰值速率在 3.6 Mbps 左右,有些人觉得 LTE 做 100Mbps 太高了,能做到 25Mbps 就行。但 William 不这样想。基于路由器领域的经验积累,他认为,4G初期的速率在无线领域看来确实很高,但在路由器领域,这个速率差不多是 10 年前的水平。尽管传输的原理不同,很多核心技术却是相通的。William 坚持 100Mbps 没什么问题,物理层以上的问题能够解决。
这是一款 LTE 单模芯片,支持LTE FDD/TDD(频分双工 / 时分双工),不支持2G/3G。在当时 LTE 网络没有大规模部署的情况下,单模LTE 应用场景受限,既不能做手机,也不能做数据卡,只能放在固定位置用于 CPE 产品形态。而且彼时行业已经推出成熟的 2G/3G/4G 多模 LTE 芯片,并且在主流市场商用发货。从这个角度说,单模 LTE 芯片巴龙 700 是一个彻头彻尾的“落后”的产品,既然这样,为什么还要设计这样一款产品?
其实这是有原因的。负责产品规划的专家 Benjamin 说:2010年恰逢德国政府发布国家宽带战略,号召运营商在 DD 800MHz(LTE Band 20,运营商的一个频段)频段上开展移动宽带业务,弥补德国广大乡村地区无线宽带接入的缺口,消除数字鸿沟。这在对手眼里,不算肥肉,但对 4G Modem 巴龙团队来说却是天赐良机,于是才设计了巴龙 700。Sean 和 William 团队完成了巴龙 700的交付,德国的运营商同意采用基于巴龙 700 平台的 CPE,4G 巴龙芯片获得了一次宝贵的机会。在当时业界已经推出多模芯片的背景下,一款单模 LTE 芯片能够获得德国运营商的认可,实属不易。
借此契机,华为充分发挥端管协同优势,成功支持德国几家重要的运营商利用 DD800MHz“数字红利频谱”在全德范围内部署移动宽带网络,巴龙700 成功在夹缝中打开市场。开头提到的在德国郊区进行信号测试,就是这个时候。
趁热打铁,基于对中国移动 TD LTE 频段的支持,巴龙 700 在上海世博会演示的即摄即传体验峰值速率达到了 100Mbps,海思也成为最早完成工信部 TD LTE 测试的厂家。基于巴龙 700 的数据卡还支撑华为网络完成在日本运营商的拓展。这就是 LTE 单模三年技术攻关播种下的革命火种。
第一代LTE多模Modem 巴龙710:选择成熟的3G架构,还是面向未来的 LTE 架构?
2012 年,多模已经成为行业主流,业界 LTE 芯片已经做到第二代,甚至第三代,海思也迅速转入多模 4G LTE 芯片巴龙 710 的研发和攻关。这时他们遇到了多模 Modem 架构选择的问题。
此前,2G/3G Modem 芯片开发架构基于 ARM9(此处 ARM为英国 ARM 公司,下同)和 ZSP(一款数字信号处理产品),有成熟的解决方案的交付能力;而之后的 4G LTE 单模 Modem 芯片则基于新的 ARM11 CPU(中央处理器)和 CEVA(思华科技,公司名,也是其产品的名字)处理器,开发了全新的更有竞争力的架构。对于 LTE 多模 Modem 的架构,两个团队进行了激烈的讨论,一方认为应该选择成熟的 3G 架构,有利于产品的快速量产;另一方认为应该选择面向未来的 LTE 架构,有利于未来演进。双方相持不下。时任海思研发管理部部长的何庭波没有立即拍板,而是给大家讲了一个故事。
2G 时代,半导体巨头 TI(得州仪器)、英飞凌,基于成功的 2G Modem 去开发 3G Modem,结果失败了。而后起之秀高通则是先开发了 3G Modem,之后把 2G 功能融合进去,结果成功了。何庭波沉默了一会,对大家说:“现在我们面临同样的历史时期,要从 3G 向 4G 切换。采用旧的成熟的架构,加入新的功能,事实证明是不适用的,无法很好地演进。我们的 4G技术架构选择,要面向未来。”于是最终决定:采用 4G LTE 架构,把 2G/3G 功能融入进去。正是这次选择,奠定了巴龙 LTE 未来芯片的清晰演进路线,从 LTE Cat. 4 的 150Mbps,到 Cat. 6 的300Mbps,再到Cat. 12 的 600Mbps,整个架构支撑了华为无线终端芯片在 LTE 上的持续演进。